T‐type voltage‐gated Ca2+ channels do not contribute to the negative feedback regulation of myogenic tone in murine superior epigastric arteries
نویسندگان
چکیده
T-type voltage-gated Ca2+ channels (CaV3.2 VGCC) have been hypothesized to control spontaneous transient outward currents (STOCs) through large-conductance Ca2+-activated K+ channels (BKCa), and contribute to the negative-feedback regulation of myogenic tone. We tested this hypothesis in superior epigastric arteries (SEAs) isolated from male C57BL/6 mice. SEAs were isolated and enzymatically dissociated to obtain single smooth muscle cells (SMCs) for whole-cell recording of paxilline-sensitive (PAX, 1 μmol/L) STOCs at -30 mV, or cannulated and studied by pressure myography (80 cm H2O, 37°C). The CaV3.2 blocker Ni2+ (30 μmol/L) had no effect on STOC amplitude (20.1 ± 1.7 pA vs. 20.6 ± 1.7 pA; n = 12, P = 0.6), but increased STOC frequency (0.79 ± 0.15 Hz vs. 1.21 ± 0.22 Hz; n = 12, P = 0.02). Although Ni2+ produced concentration-dependent constriction of isolated, pressurized SEAs (logEC50 = -5.8 ± 0.09; Emax = 72 ± 5% constriction), block of BKCa with PAX had no effect on vasoconstriction induced by 30 μmol/L Ni2+ (in the absence of PAX = 66 ± 4% constriction vs. in the presence of 1 μmol/L PAX = 65 ± 4% constriction; n = 7, P = 0.06). In contrast to Ni2+, the nonselective T-type blocker, mibefradil, produced only vasodilation (logEC50 = -6.9 ± 0.2; Emax = 74 ± 8% dilation), whereas the putative T-type blocker, ML218, had no significant effect on myogenic tone between 10 nmol/L and 10 μmol/L (n = 6-7, P = 0.59). Our data do not support a role for CaV3.2 VGCC in the negative-feedback regulation of myogenic tone in murine SEAs and suggest that Ni2+ may constrict SEAs by means other than block of CaV3.2 VGCC.
منابع مشابه
Stretch-dependent calcium uptake associated with myogenic tone in rabbit facial vein.
Many blood vessels possess stretch-dependent myogenic tone. This tone contributes to the active resistance in small arteries, which regulates blood flow in the body. In this report we describe results indicating that stretch-dependent myogenic tone in the rabbit facial vein, a vascular preparation with useful experimental properties, is accompanied by an increased uptake of 45Ca2+. This influx ...
متن کاملOpposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries.
In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation ...
متن کاملKv2 channels oppose myogenic constriction of rat cerebral arteries.
By hyperpolarizing arterial smooth muscle, voltage-gated, Ca2+-independent K+ (Kv) channels decrease calcium influx and thus oppose constriction. However, the molecular nature of the Kv channels function in arterial smooth muscle remains controversial. Recent investigations have emphasized a predominant role of Kv1 channels in regulating arterial tone. In this study, we tested the hypothesis Kv...
متن کاملIdentification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development.
L-type Ca(2+) channels are broadly expressed in arterial smooth muscle cells, and their voltage-dependent properties are important in tone development. Recent studies have noted that these Ca(2+) channels are not singularly expressed in vascular tissue and that other subtypes are likely present. In this study, we ascertained which voltage-gated Ca(2+) channels are expressed in rat cerebral arte...
متن کاملIdentification of L- and T-type Ca channels in rat cerebral arteries: role in myogenic tone development
El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG. Identification of Land T-type Ca channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol 304: H58–H71, 2013. First published October 26, 2012; doi:10.1152/ajpheart.00476.2012.— L-type Ca channels are broadly expressed in arterial smooth muscle cells, and their voltage-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017